A note on computing range space bases of rational matrices
نویسنده
چکیده
We discuss computational procedures based on descriptor state-space realizations to compute proper range space bases of rational matrices. The main computation is the orthogonal reduction of the system matrix pencil to a special Kronecker-like form, which allows to extract a full column rank factor, whose columns form a proper rational basis of the range space. The computation of several types of bases can be easily accommodated, such as minimum-degree bases, stable inner minimum-degree bases, etc. Several straightforward applications of the range space basis computation are discussed, such as, the computation of full rank factorizations, normalized coprime factorizations, pseudo-inverses, and inner-outer factorizations.
منابع مشابه
New Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملThree New Systematic Approaches for Computing Heffron-Phillips Multi-Machine Model Coefficients (RESEARCH NOTE)
This paper presents three new systematic approaches for computing coefficient matrices of the Heffron-Phillips multi-machine model (K1, …, K6). The amount of computations needed for conventional and three new approaches are compared by counting number of multiplications and divisions. The advantages of new approaches are: (1) their computation burdens are less than 73 percent of that of convent...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملOn the WZ Factorization of the Real and Integer Matrices
The textit{QIF} (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ} factorization. The WZ factorization can be faster than the textit{LU} factorization because, it performs the simultaneous evaluation of two columns or two rows. Here, we present a method for computing the real and integer textit{WZ} and textit{ZW} factoriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.00489 شماره
صفحات -
تاریخ انتشار 2017